
European Journal of Agronomy 157 (2024) 127191

1161-0301/© 2024 Elsevier B.V. All rights reserved.

TSP-yolo-based deep learning method for monitoring cabbage 
seedling emergence 

Xin Chen 1, Teng Liu 1, Kang Han , Xiaojun Jin *, Jinxu Wang , Xiaotong Kong , Jialin Yu * 

Peking University Institute of Advanced Agricultural Sciences / Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China   

A R T I C L E  I N F O   

Keywords: 
Crop seedling counting 
Object detection 
Object tracking 
UAV 
YOLOv8 

A B S T R A C T   

Real-time monitoring of seedling emergence is vital for vegetable crop management and yield estimation. 
Traditionally, crop seedling emergence monitoring relies on low-efficient and time-consuming manual counting. 
To address this issue, this research proposed an efficient, fast, and real-time cabbage seedling counting method 
(combining the improved YOLOv8n, tracking algorithm, and image processing) to accurately track cabbage 
seedlings in the field and implement counting with an unmanned aerial vehicle (UAV). The improved YOLOv8n 
replaced the C2f Block in the YOLO backbone with a Swin-conv block and incorporated ParNet attention modules 
in both the backbone and neck parts. This enhancement enables the YOLOv8n to surpass the base model’s 
performance, achieving a mAP50–95 of 90.3 %, representing a 14.5 % improvement. The experiments demon-
strated the superior capabilities of the counting method in terms of speed and accuracy. In field experiments, the 
proposed Tracking algorithms-Swin-conv blocks-ParNet attention-YOLOv8n (TSP-yolo) counting method 
demonstrated consistent and reliable accuracy in counting cabbage seedlings while demanding only one-seventh 
of the time needed compared to the manual counting method. In summary, based on TSP-yolo and implemented 
through an UAV, the developed seedling emergence counting method demonstrated an excellent capability of 
counting cabbage seedlings, resulting in significant savings in human resources for crop management.   

1. Introduction 

High-quality seeds contribute significantly to superior crop quality 
and yield (Matthews et al., 2012). The emergence of seedlings is a 
crucial phenological occurrence affecting the success of an annual crop. 
It marks the moment when a seedling transitions from relying on 
nonrenewable seed reserves provided by its parent to initiating photo-
synthetic autotrophs (Albert, 2023). Seedling emergence plays a pivotal 
role in crop growth and development, and high-quality seeds exhibiting 
a high emergence rate can positively impact the yield (Reddy et al., 
2017). Moreover, the timing and uniformity of crop seeding emergence 
often dictate its success in competing with weeds and susceptibility to 
diseases. Therefore, developing an accurate, reliable, and efficient 
method to monitor crop seedling emergence is necessary. 

Cabbage (Brassica rapa L. ssp. pekinensis) holds significant impor-
tance as a vegetable in China (Kong et al., 2020). It is a rich source of 
vitamins, dietary fiber, and antioxidants, promoting intestinal peristalsis 
and aiding digestion (Zou et al., 2021). In China, cabbage has diversified 
into approximately 800 local varieties (Jin et al., 2021a; Liang et al., 

2019). Given its nutritional value and ease of cultivation, China boasts a 
high domestic production of cabbage (Wang et al., 2019). Traditionally, 
cabbage seedling emergence has been monitored through manual visual 
counting, but this approach proves inefficient and is susceptible to 
counting errors. 

For many years, scholars have dedicated substantial effort in the 
domain of image processing to accomplish agricultural object recogni-
tion and counting tasks (Basavaiah and Arlene Anthony, 2020; Lin et al., 
2020; Nanehkaran et al., 2020; Rahman et al., 2023; Septiarini et al., 
2021). To accomplish the counting task for plant-based objects, con-
ventional image processing encompasses four main feature categories, 
including color (Malik et al., 2018; Tan et al., 2018), shape (Oo and 
Aung, 2018), texture (Hameed et al., 2021; Kurtulmus et al., 2011; Rojas 
et al., 2017), and hybrid-feature-based methods (Lu et al., 2018; Wu 
et al., 2019; Yu et al., 2021). These methods leverage the phenotypic 
characteristics of plants for identification and counting. Nevertheless, 
traditional image processing methods often limit feature utilization to 
shallow ones, overlooking deep-level features (Hu et al., 2022). The 
artificial determination of which features to use can introduce inevitable 
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human-factor errors when employing traditional image processing 
methods (Saleem et al., 2021). 

With the advancements in computer hardware and software, many 
methods for image feature extraction and object recognition have 
emerged in deep learning (Devlin et al., 2018; Krizhevsky et al., 2012; 
Vaswani et al., 2017). Krizhevsky et al. (2012) proposed AlexNet, which 
incorporated more convolutional layers to extract deep features, 
resulting in enhanced performance for feature extraction. ResNet 
introduced a residual block to solve the problem of gradient vanishing 
and network degradation in deep neural networks, allowing the network 
to be designed deeper for better performance (He et al., 2016). Doso-
vitskiy et al. (2020) introduced the transformer attention mechanism 
from natural language processing to the domain of computer vision. 
They demonstrated that pure transformer structures can excel in image 
processing tasks. Detection models can be classified into two categories: 
region-based and region-free models. Region-based models, exemplified 
by the R-CNN family (Girshick et al., 2014), differ from region-free 
models, exemplified by the YOLO family (Redmon et al., 2016). 

In recent years, many scholars have ventured into the application of 
deep learning for identifying crop plants, diseases, and fruits (Jin et al., 
2021b, 2022, 2024; Hu et al., 2021). In practical agricultural applica-
tions, Xiao et al. (2020) compared GoogLeNet, VGG16, and ResNet50 for 
strawberry (Fragaria×ananassa) disease detection. Cui et al. (2022) 
introduced a dual-channel convolutional neural network model 
designed for the early-stage detection of apple (Malus) branches infected 
by apple valsa canker. Zhang et al. (2018) employed an improved 
AlexNet network as the backbone of R-CNN to detect apple tree branches 
using integrated pseudo-color and depth images. Jia et al. (2020) 
introduced a Mask Region Convolutional Neural Network (Mask R-CNN) 
for apple fruit localization. Regarding the region-free methods, Tian 
et al. (2019) combined DenseNet with YOLOv5s to detect apple fruits at 
various stages. Wu et al. (2020) proposed a real-time method for apple 
flower detection utilizing the channel-pruned YOLOv4 deep learning 
algorithm. 

Monitoring the emergence of crop seedlings is a facet of the target 
detection challenge. Currently, a successful strategy involves leveraging 
UAVs to capture images of crops, subsequently employing deep learning 
models to process the images and achieve accurate counting results (Guo 
et al., 2021). Ye et al. (2023) compared object-based image analysis and 
Mask R-CNN deep learning method for cabbage extraction and seedling 
quantity estimation. Their findings revealed that the Mask R-CNN model 
outperformed object-based image analysis in tasks related to vegetable 
detection. Deep neural networks offer the advantage of rapid recogni-
tion speed, eliminating the need for human interference (Ma et al., 2020, 
2022a, 2022b). Nevertheless, their recognition accuracy needs to be 
further improved. Only a few published studies on crop seedling 
counting utilized real-time video (Tan et al., 2022). In recent research, 
Cui et al. (2023) effectively employed YOLOv5s and ByteTrack for 
detecting missing rice (Oryza sativa L.) seedlings, showcasing the po-
tential of these technologies. However, the specific challenge of accu-
rately counting cabbage seedlings remains unaddressed in the literature. 
To fill this critical gap in precision agriculture, the present study pro-
poses a real-time video counting method designed to achieve reliable 
and rapid recognition and counting of cabbage seedlings. 

There are two major innovations presented in this research, 
including (1) the improvements to the YOLOv8n model, optimizing its 
performance metric for object detection on the cabbage seedling dataset 
while maintaining a relatively high inference speed, and (2) the intro-
duction of a target counting algorithm named TSP-yolo, which combines 
the improved YOLOv8n with a tracking algorithm and OpenCV pro-
gram, achieving stable and rapid counting of cabbage seedlings. 

2. Materials and method 

2.1. Dataset preparation 

The training and testing images were taken from multiple cabbage 
fields at the Peking University Institute of Advanced Agricultural Sci-
ences at Weifang, Shandong Province, China (36̊23’48’’N, 
119̊14’22’’E). The cabbage fields were located in a temperate monsoon 
climate zone with nutrient-rich soil, an average annual temperature of 
about 12 ℃, and an average precipitation of 17.4 mm. The cabbage 
seeds were sown on August 21, 2023. The sown seeds were arranged 
with a row spacing of approximately 60 centimeters and an inter-plant 
spacing of 40 centimeters. For the purpose of irrigation, a drip hose 
system was employed, ensuring adequate soil moisture through irriga-
tion every three days. Fig. 1 presents the study field and their specific 
geographic locations. 

The cabbage images were captured on September 4, 2023, approxi-
mately two weeks following the sowing of seeds. This interval is 
considered optimal for observing early growth stages and assessing 
initial seedling establishment, providing critical data on emergence 
rates and seedling vigor. A Phantom 4 RTK SE (CN) Combo UAV man-
ufactured by Shenzhen DJI Innovative Technology Co. Ltd. was used to 
perform aerial imaging and videography directly above the cabbage 
fields at a 90-degree angle. The drone was flown at a steady speed of 
1.5 m per second along a predefined flight path. The flight operations 
were conducted using the software provided by the drone manufacturer, 
allowing for precise control over the flying speed, altitude, and degree of 
overlap between flight paths. This ensured consistency and compre-
hensiveness in the image capture process, thereby guaranteeing the 
continuity and coverage necessary for accurate seedling emergence 
monitoring. Equipped with a powerful 20-megapixel camera and flying 
at a constant altitude of 3 m above ground level, the UAV captured a 
total of 4058 high-resolution images at 5472 × 3648 pixels and videos at 
3840 × 2160 pixels with a smooth frame rate of 30 frames per second 
(fps). 

To prepare the images for deep learning training of target detection 
algorithms, Anylabeling (version 0.3.3, open-source software available 
at https://github.com/vietanhdev/anylabeling) was used to annotate 
the images using the Segment Anything model (Kirillov et al., 2023). The 
ground truth dataset included categorical information, along with the 
coordinates and sizes of bounding boxes, designed to precisely enclose 
target objects while minimizing gaps and avoiding overlap. The software 
processed images captured by the UAVs using the Segment Anything 
model to automatically delineate the targets. The bounding boxes were 
manually adjusted if its output from the model did not adhere to the 
predefined rules. Each target was then manually labeled as "cabbage". 
Finally, the software compiled the categories of all annotated objects in 
an image along with their corresponding bounding box details into a 
JSON format file. The resulting JSON files were subsequently formatted 
using Python scripts to obtain annotation files in TXT format that could 
be used for YOLOv8 training. The training and testing datasets were 
divided into a 7:3 ratio, consisting of 2840 annotated images for training 
and 1218 for testing. 

2.2. Improvement of YOLOv8n 

The YOLO family is a well-known algorithm for one-stage target 
detection and is frequently used for detection tasks. Compared with the 
two-stage target detection algorithm, the one-stage target detection al-
gorithm significantly improves the detection speed of the network by 
merging the first stage (focused on identifying the target object location 
and obtaining the proposed region) with the second stage. To reduce the 
deployment cost, YOLOv8n, which has the least network layers and the 
lowest feature map width among the YOLOv8 family, is chosen as the 
base model for cabbage detection in this study. 

Our preliminary test indicated that YOLOv8n exhibits limitations 
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Fig. 1. Experimental data collection site.  

Fig. 2. The structure of the improved YOLOv8n network.  
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impacting performance in certain scenarios. A notable challenge is 
suboptimal feature extraction, potentially resulting in reduced detection 
accuracy in complex or variable environments. Furthermore, its archi-
tecture may inadequately distinguish similar objects. These limitations 
can become particularly evident in tasks requiring high precision, such 
as the detection of specific types of vegetation in diverse agricultural 
settings. To address these challenges and optimize the algorithm for 
applications in cabbage detection, we have implemented enhancements 
to YOLOv8n. 

The algorithm was improved in the following two key aspects:  

1) The efficiency of feature extraction was significantly improved by 
implementing the Swin Transformer layer instead of the C2f (Cross 
Stage Partial Network Fusion) module in the YOLO backbone 
network.  

2) The ParNet attention mechanism module was incorporated into the 
YOLO backbone and head network to improve the accuracy of cab-
bage recognition. The resulting network structure is depicted in  
Fig. 2. 

2.2.1. Swin-conv Block 
Swin Transformer (Liu et al., 2021), as an important variant network 

of the Transformer (Dosovitskiy et al., 2020) model in the field of 
computer vision, has demonstrated exceptional performance in target 
detection tasks. Inspired by the Swin Transformer, we proposed the 
Swin-conv Block to replace the C2f module in the YOLOv8n backbone 
network for improved feature extraction. In the Swin-conv Block, the 
Swin Transformer Block is utilized to establish cross-window connec-
tivity via ‘shifted windows’. This enables the model to focus on the 
relevant information of neighboring windows and facilitate 

cross-window feature interaction. This feature interaction capability 
expands the receptive field of the model, enabling it to better understand 
and represent the position and shape of objects. As a result, Swin-conv 
Block has higher computational efficiency and better performance in 
processing complex images and data compared to C2f. 

The network structure of Swin-conv Block is shown in Fig. 3(a). The 
input feature map is fed into two streams: integrating the global feature 
using the Swin Transformer block and extracting features directly using 
the convolution block. These streams are then fused together to achieve 
the fusion of feature maps from two different levels. It is worth 
mentioning that by applying a convolutional layer of 1×1 convolutional 
kernel size rather than a fully connected layer, the limitation on the size 
of the input feature map is lifted while realizing the upscaling or 
downscaling operation of the feature map. 

The Swin Transformer Block in Fig. 3(a) is composed of the Window- 
based Multiple Self-Attention (W-MSA) module and the Shifting 
Window-based Multiple Self-Attention (SW-MSA) module in tandem, as 
shown in Fig. 3(b). 

The W-MSA module first divides the feature map into multiple small 
windows without overlapping and then performs self-attention opera-
tions inside each window individually. The SW-MSA module shifts the 
output feature vectors of the previous W-MSA module using shifted 
windows and then does the same self-attention operation. In this way, 
the interaction of feature information across windows is realized. The 
specific window division is shown in Fig. 4. In summary, the Swin-conv 
Block has higher computational efficiency and a better ability to interact 
with features from different regions compared to the C2f module. 

2.2.2. ParNet attention 
The utilization of attention mechanisms can effectively direct the 

neural network’s attention toward significant information by assigning 

Fig. 3. The network structure of Swin-conv Block. Abbreviations: MLP, multilayer perceptron; SW-MSA, Shifting Window-based Multiple Self-Attention; W-MSA, 
Window-based Multiple Self-Attention. 
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high weights. This helps extract occluded features while leading to a 
slight increase in computation costs. The ParNet attention mechanism 
(Goyal et al., 2022) employs a combination of convolutional layers with 
varying sizes of convolutional kernels to extract vectors with diverse 
field of view sizes. These vectors are then subjected to batch normali-
zation and fused into a feature vector through a 3×3 convolution. The 
reparameterization of this structure helps to reduce the latency in the 
inference process while reducing the network depth through parallel 
computation. In addition, the Skip-Squeeze-Excitation (SSE) module is 
designed as an attention operation to solve the problem of a limited 
receptive field for 3×3 convolution. Finally, SiLU is used instead of the 
ReLU activation function to enhance the nonlinear representation of the 
network. The overall flow of the ParNet attention mechanism is shown 
in Fig. 5. An experimental comparison was conducted to verify the 
suitability of ParNet Attention as the primary attention mechanism for 
this task. A total of 11 other attention mechanisms, along with the 
ParNet, were analyzed and compared. Multiple attempts were made to 
insert each of the attention mechanisms at various locations within the 
network. The final evaluation was based on the results obtained using 

the most effective insertion method for each mechanism. 

2.3. TSP-yolo-based real-time cabbage seedling video counting model 

The real-time model for counting cabbage seedlings utilizes two 
primary components: the TSP-yolo object tracking algorithm and the 
target counting algorithm. When collecting videos using UAVs, the 
presented targets may appear in multiple frames due to the temporal 
continuity of the video footage. Implementing an object detection al-
gorithm, such as YOLO, for each frame may not accurately recognize 
cabbage shape features as the same target due to variations in viewing 
angle, wind disturbance, and other external factors. Inspired by a mul-
tiple object tracking algorithm-DeepSort (Wojke et al., 2017), this 
research devised a TSP-yolo object tracking algorithm to effectively 
track the target object and assign trajectory tracking and ID tags to each 
individual target. 

In order to accurately track an object, matching the target in the 
preceding and following frames is required to determine if it is the same 
target. The conventional method utilizes a Kalman filtering algorithm to 

Fig. 4. The difference window division method between W-MSA and SW-MSA. Abbreviations: SW-MSA, Shifting Window-based Multiple Self-Attention; W-MSA, 
Window-based Multiple Self-Attention. 

Fig. 5. The structure of the ParNet attention mechanism.  
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predict the possible position of the target in the next frame, using its 
motion information from the previous frame. This predicted position is 
then compared to the actual detected target frame through IoU match-
ing, which measures the degree of overlap between the two frames in 
terms of area repeatability. Suppose the matching is successful, as 
indicated by an IoU value greater than a pre-determined threshold. In 
that case, it suggests that the target position is comparable in the two 
frames and may correspond to the same target. On this basis, our method 
utilizes the target feature vectors extracted by the improved YOLOv8n 
for an extra match. 

The TSP-yolo object tracking algorithm is described as follows: 
initially, the improved YOLOv8n detects the detection frame position 
and size of the target in the previous and current frames and extracts its 
feature vector. The detected position information of the target in the 
previous frame is used to predict its possible position in the current 
frame using the Kalman filtering algorithm. Subsequently, the predicted 
current frame position is matched with the actual detected current frame 
position. Based on successful position matching, extra matching is 
further performed by calculating the similarity of the feature vectors of 
the target object in the consecutive frames. Feature vector matching 
enables target identification and confirms whether the target is the same 
across frames. Finally, the Kalman filter algorithm is updated according 
to the tracking results, ensuring continuous prediction of the target 
location in subsequent frames. 

The whole process achieves continuous tracking of the target 
through multi-stage matching and prediction, making full use of posi-
tional, appearance, and motion information. This integrated tracking 
approach can more robustly deal with the changes and movements of 
the target in the video. The technical route of the TSP-yolo object 
tracking algorithm is shown in Fig. 6. 

To implement the cabbage seedling counting function, the proposed 
method employed the following target counting algorithm:  

a. Track the cabbage seedlings in the video frame using the TSP-yolo 
object tracking algorithm and anchor the target. 

b. Point the center point of the lower border line of the cabbage seed-
ling anchor frame as the marking point of the target and set a 
detection line in the video.  

c. Upon detection of the marking point crossing the detection line for 
the first time, as confirmed by the TSP-yolo object tracking algo-
rithm, the count of cabbage seedlings is increased by one. 

The cabbage seedling emergence rate can be calculated by dividing 
the total number of counts by the number of seeds sown. The target 
counting algorithm is depicted in Fig. 7. 

2.4. Experimental configuration 

All the deep neural network models in this paper were trained and 
tested on the same device with designated hardware configurations. The 
operating system was Ubuntu 20.04.6 LTS, while the CPU utilized was 
an Intel® Xeon® W-2265, and the GPU was an Nvidia GeForce RTX 
3080Ti with 12 G of video memory. The configured conda environment 
included Python 3.9.18, PyTorch 2.0.1, CUDA 11.7, and Ultralytics 
YOLO v8.0.3. The hyperparameters for deep learning training are pre-
sented in Table 1. 

2.5. Evaluation metrics 

In this paper, the following performance metrics were selected to 
assess the performance of the YOLO model: precision, recall, mAP50, 
mAP50–95, and inference time. The index calculations are presented in 
Eqs. (1)-(3). 

precision =
TP

TP + FP
(1)  

recall =
TP

TP + FN
(2)  

mAP = AP =

∫ 1

0
precisiond(recall) (3)  

where mAP refers to Mean Average Precision. In our case, mAP is 
defined as the Average Precision (AP) value specifically for the cabbage 
class due to the recognition target being limited to only one class. True 
positive (TP) represents the count of samples accurately classified as 
cabbage seedlings; false positive (FP) refers to the count of samples 

Fig. 6. Overall technical route of the TSP-yolo object tracking algorithm.  
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incorrectly classified as cabbage seedlings; and false negative (FN) 
represents the count of samples that were not correctly identified as 
cabbage seedlings. 

2.6. Deep learning model-based counting versus manual counting 

Ten video segments, each covering four rows of cabbage seedlings 
spread across a 2.4 × 12 m area, were captured to evaluate the effec-
tiveness of the cabbage counting methods. The seedling emergence rate 
was calculated by dividing the number of emerged seedlings by the total 
number of seedlings (both emerged and non-emerged) within each video 
segment. QQ plots and Levene’s test were carried out to examine 
normality and equality of variances, respectively. The Student’s t-test, 
with a significance level of 0.05, was conducted to compare the means of 

the proposed deep learning model-based and manual counting methods. 

3. Results and discussion 

3.1. Comparison and ablation experiment 

Table 2 presents the results of the attention mechanisms incorpo-
rated into YOLOv8n. It can be observed that all the attention modules 
significantly enhanced the model’s composite metric of mAP. This 
proves the effectiveness of the attention mechanism in enhancing the 
performance of the vision detection model. The impact of the attention 
mechanism on mAP50–95 is significant for comparison. Among the 12 
distinct attentional mechanisms evaluated, the ParNet Attention Module 
exhibited the highest performance with a score of 81.7% on the 
mAP50–95, outperforming the second-highest improvement achieved 
by the SimAM Attention Module by 1.7%. 

Inference time is essential. Inserting an attention module will inev-
itably increase the inference time by a certain duration. The insertion of 
the SimAM module resulted in an inference time of 1.2 ms, while the 
insertion of the ParNet attention module resulted in an inference time of 
0.6 ms. The insertion of other attention modules resulted in a marginal 
increase of 0.1–0.2 ms inference time. The 0.6 mm inference time allows 
for enough image processing time for the algorithm, enabling real-time 
detection. Therefore, employing ParNet attention mechanisms effec-
tively improves the efficacy of cabbage detection models with minimal 
impact on inference time. 

Fig. 7. The operational procedure of the proposed TSP-yolo object tracking algorithm: (a) The cabbage seedlings are tracked, anchor boxes are employed, and a 
marking point and detection line are added, (b) The counting is performed as the marking point of the tracked seedlings intersects the detection line. 

Table 1 
The hyperparameters for deep learning training.  

Hyperparameter Parameter value 

Total epoch 200 
Batch size 16 
Image size 640×640 pixels 
Number of workers 8 
Optimizer Adam 
Beta 0.95 
Initial learning rate 0.001 
Weight decay 0.005  

X. Chen et al.                                                                                                                                                                                                                                    
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Heatmaps serve as effective tools for visualizing the performance, 
focus areas, and attention distribution of neural network models. Fig. 8 
illustrates the heatmaps generated by incorporating attention mecha-
nisms into YOLOv8n. Specifically, the heatmap produced by YOLOv8n- 
ParNet Attention exhibits moderate coverage and divergence. Heatmaps 
provide insights into the areas of interest the model detects and the 
intensity of attention allocated to those areas. In the context of 
YOLOv8n-ParNet Attention, the moderate coverage suggests that the 
model successfully identified relevant features across the image, while 
the moderate divergence indicates a balanced distribution of attention 
across multiple regions. 

Table 3 presents the performance results of the model after 
combining different attention mechanisms and Swin-conv Block. It is 
evident that not all combinations of attention mechanisms and Swin- 
conv Block lead to further improvements in model performance. The 
incorporation of EffectiveSE attention yielded the highest scores, with 
the model achieving 98% and 99.5% on the Recall and mAP50 metrics, 
respectively, outperforming all other combinations. However, among 
the evaluated 12 combinations, the combination of ParNet attention and 
Swin-conv Block achieved a score of 90.3 % on the mAP50–95 metric, 
surpassing the second-ranked Shuffle attention module by 3.1 %. 
Additionally, regarding inference time, the combination of ParNet 
attention and Swin-conv Block only consumes 1 ms per frame, making it 

Table 2 
Performance of the inserted attention module.   

Precision 
(%) 

Recall 
(%) 

mAP50 
(%) 

mAP50- 
95 (%) 

Inference 
time (ms) 

YOLOv8n  97.4  96.8  99.1  75.8  0.5 
+CoT  96.3  96  98.9  75.9  0.6 
+ECA  97  95.3  98.9  80  0.6 
+EffectiveSE  97.6  94.2  98.9  79.3  0.6 
+Gam  97.1  95.8  99  79.2  0.6 
+LSK  96.4  96.5  98.9  79.8  0.6 
+MHSA  97.7  96.6  99.2  78.5  0.6 
+MobileViT  97.6  94.3  98.9  79.7  0.7 
+ParNet  95.9  97.7  99  81.7  0.6 
+SE  96.9  94.6  98.9  78.5  0.6 
+Shuffle  95.8  96  98.9  80.3  0.6 
+SimAM  98.7  97.2  99.1  78  1.2 
+SK  97.1  97  99  78  0.6 

Abbreviations: CoT, Cross-modal Transformer Attention; ECA, Efficient Channel 
Attention; EffectiveSE, Effective Squeeze and Extraction Attention; Gam, Global 
Average Max Attention; LSK, Large Separable Kernel Attention; MHSA, Multi- 
Head Attention Mechanism; ParNet, ParNet Attention; SE, Squeeze and Extrac-
tion Attention; Shuffle, Shuffle Attention; SimAM, Selective Image Attention 
Mechanism; SK, Selective Kernel Attention. 

Fig. 8. Heatmaps of the images for the attention mechanisms.  
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the fastest among all combinations. From these observations, it can be 
concluded that the combination of ParNet attention and Swin-conv 
Block exhibits the best performance. 

In order to demonstrate the effectiveness of the ParNet attention 
mechanism and the Swin-conv Block in improving the model perfor-
mance, a series of ablation experiments were implemented. The results 
are shown in Table 4. The results of the ablation experiments showed 
that the incorporation of the ParNet attention module to the network 
structure alone resulted in an improvement of 5.9% in mAP50–95, 
reaching a performance of 81.7%; however, this also resulted in a slight 
increase of 0.1 ms in inference time. This outcome is understandable and 
can be attributed to the increased complexity of the network structure 
due to the incorporation of the attention module. Replacing the C2f 
module in the base model with the Swin-conv module yielded significant 
improvement to the base network, with performance reaching a preci-
sion, recall, mAP50, and mAP50–95 of 95.9 %, 97.4 %, 99.3 %, and 
85.1 %, respectively. The inference time increased to 0.9 ms, while the 
mAP50–95 exhibited a significant increase of 9.3 %. This comparison 
proves the effectiveness of both improvements in yolov8n, resulting in 
promising outcomes. By incorporating these two improvements into the 
base model simultaneously, the improved YOLOv8n achieved remark-
able performance metrics, reaching precision, recall, mAP50, and 
mAP50–95 values of 98.5 %, 97.8 %, 99.4 %, and 90.3 %, respectively. 
Meanwhile, the inference time was 1 ms per image, which is double the 
duration of the base model; however, it remains capable for real-time 
detection purposes. 

3.2. Performance comparison between improved YOLOv8n and other 
SOTA networks 

In order to compare the effectiveness of improved detection models, 
experiments were conducted using the prevailing models from two 
dominant target detection schools of thought (two-stage vs. one-stage). 
The results are shown in Table 5. 

Table 5 displays the substantial superiority of one-stage models, 
including YOLOv5s, YOLOv8n, and improved YOLOv8n, over the two- 
stage model Faster R-CNN (Ren et al., 2015) in terms of overall per-
formance. Especially for the mAP50–95 metric, Faster RCNN achieved 
only 46.2%, significantly lower by >37.3 % compared to one-stage 
models. Additionally, the inference time for Faster RCNN, at 52.7 ms 
per image (19.96 fps), severely restricted its ability to process video in 
real-time. Between the one-stage algorithms, the improved YOLOv8n 
yielded slight discrepancies in precision, recall, and mAP50 when 
compared to the widely used YOLOv5s. However, this gap was notice-
able and pronounced in the more rigorous mAP50–95 metrics, where the 
YOLOv8n achieved 90.3 %, indicating a 6.8 % increase in performance 
compared to the YOLOv5s. 

In terms of inference time, YOLOv5s exhibited a processing speed of 
3.1 ms per frame. However, the improved YOLOv8n boasted an even 
shorter inference time, providing ample room for subsequent image 
processing while still meeting real-time processing requirements. With 
enough time, deploying devices with excessive arithmetic performance 
is unnecessary to ensure real-time detection, significantly reducing 
equipment costs. In conclusion, the improved YOLOv8n is capable of 
effectively, quickly, and efficiently identifying cabbage seedlings. 

3.3. Counting performance 

A study was conducted to evaluate the effectiveness of the UAV- 
implemented model for counting cabbage seedlings in field conditions. 
Experiments were undertaken to compare the manual counting method 
with the TSP-yolo-based real-time video counting model implemented 
with a UAV, and the obtained results are presented in Table 6. 

In this set of comparisons, the proposed machine vision-based 
method achieved 98% accuracy under large sample conditions. The 
proposed target counting method significantly outperformed the manual 
counting method in terms of time efficiency, taking only about one- 
seventh of the time consumed by the manual method. Manual count-
ing requires continuous contemplation in a larger field, and the possi-
bility of error increases with longer working hours. In contrast, the 
machine vision-based method can maintain an impressive accuracy of 
98.02% until completing the entire seedling counting task. 

An investigation of the efficacy of the proposed method relative to 
manual counting was performed using ten video segments, each 
covering a 1.6 × 12 m field. The counting of cabbage seedlings was 
executed using model-based and manual methods for each video. The 
cabbage seedling number counted manually and by the proposed 
method were recorded as 116±4.7 and 117.6±4.3 (mean ± standard 
errors) per video, respectively. These counts correspond to emergence 
rates of 94.7±1.3% and 95.6±1.2% (mean ± standard errors), respec-
tively. The P-value derived from the application of the Student’s t-test 
exceeded 0.05 for both the number of counts and emergence rates, 

Table 3 
Comparison of different attention mechanisms and Swin-conv Block 
combination.   

Precision 
(%) 

Recall 
(%) 

mAP50 
(%) 

mAP50- 
95 (%) 

Inference 
time (ms) 

YOLO 
v8n+Swin- 
conv Block  

98.4  97.4  99.3  85.1  0.9 

+CoT  98.1  97.2  99.2  83.5  1.1 
+ECA  98.8  97.3  99.3  86.4  1.2 
+EffectiveSE  98.1  98  99.5  85.7  1.1 
+Gam  98.1  97.7  98.8  85.4  1.1 
+LSK  98.4  97.5  99.1  86.6  1.3 
+MHSA  97.9  97.4  99.1  85.2  1.3 
+MobileViT  98.1  97.5  98.6  86  1.7 
+ParNet  98.5  97.8  99.4  90.3  1.0 
+SE  98.7  96.6  99.2  84  1.4 
+Shuffle  99  97.5  99.3  87.2  1.3 
+SimAM  98.2  97  99.1  83.4  1.6 
+SK  97.5  96  98.6  83  1.2 

Abbreviations: CoT, Cross-modal Transformer Attention; ECA, Efficient Channel 
Attention; EffectiveSE, Effective Squeeze and Extraction Attention; Gam, Global 
Average Max Attention; LSK, Large Separable Kernel Attention; MHSA, Multi- 
Head Attention Mechanism; ParNet, ParNet Attention; SE, Squeeze and Extrac-
tion Attention; Shuffle, Shuffle Attention; SimAM, Selective Image Attention 
Mechanism; SK, Selective Kernel Attention. 

Table 4 
Comparison between the base model and the improved YOLOv8n.   

Precision 
(%) 

Recall 
(%) 

mAP50 
(%) 

mAP50- 
95 (%) 

Inference 
time (ms) 

YOLO v8n  97.4  96.8  99.1  75.8  0.5 
+ParNet 

attention  
95.9  97.7  99  81.7  0.6 

Replace C2f 
with Swin- 
conv Block  

98.4  97.4  99.3  85.1  0.9 

+ParNet 
attention 
+Swin-conv 
Block  

98.5  97.8  99.4  90.3  1.0 

Abbreviations: C2f, Cross stage partial network fusion block. 

Table 5 
Comparison between the improved YOLOv8n and SOTA models.  

Architecture Precision 
(%) 

Recall 
(%) 

mAP50 
(%) 

mAP50- 
95 (%) 

Inference 
time (ms) 

Faster RCNN  69.9  93.8  91.3  46.2  52.7 
YOLOv5s  97.7  98  99.3  83.5  3.1 
YOLOv8n  97.4  96.8  99.1  75.8  0.5 
improved 

YOLOv8n  
98.5  97.8  99.4  90.3  1.0 

Abbreviations: Faster RCNN, Faster Region Convolutional Neural Network. 
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suggesting no statistically significant difference between the manual 
counting and the proposed method. These findings substantiate the 
feasibility of the proposed method as an effective alternative to manual 
counting. 

Fig. 9 illustrates the validity of the cabbage seedling counting model. 
Subfigures (a), (b), and (c) in Fig. 9 are arranged in a time sequence. In 
Fig. 9(b), the marked point of the cabbage labeled 53 touched the 
detection line, resulting in a subsequent increase of 1 in the number of 
cabbages in the upper left corner, reaching a total of 39. In Fig. 9(c), the 

Table 6 
Cabbage seedling counting results obtained from the TSP-yolo-based real-time 
video counting model and the manual counting method.  

Method Number of 
instances 

Accuracy 
(%) 

Time 
(min) 

Manual counting  761  100  21.6 
Realtime cabbage seedling video 

counting model  
746  98.02  3.5  

Fig. 9. Demonstration of cabbage seedling counts.  
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marked points corresponding to cabbages labeled 54 and 55 hit the 
detection line, resulting in an increase in the number of cabbages present 
in the upper left corner from 39 to 41. 

Fig. 10 presents the results of the model counting method. Further-
more, the total seedling counts are divided by the area surveyed to 
calculate the seedling density. The recorded video, lasting 3 minutes and 
32 seconds, demonstrated the successful identification of 746 cabbage 
seedlings by the proposed counting model, as shown in Table 6. The 
numerical values of IDs assigned to cabbages in Fig. 10 amounted to 
1645. This observation can be attributed to the influence of UAV- 
generated wind affecting the foliage features of cabbages in field envi-
ronments. Consequently, the network re-assigned new IDs to cabbages 
exhibiting significant variations in their foliage features, resulting in a 
substantial increase in the total ID count. However, since the impact of 
the wind is transient, the network can quickly reassign the correct IDs to 
cabbages. This phenomenon did not affect the model’s ability in 
detecting and counting in the actual scenario. The above comparisons 
suggest that the proposed method can effectively, quickly, and reliably 
perform the task of cabbage seedling counting. It is worth noting that the 
flight operations were meticulously conducted using the software pro-
vided by the drone manufacturer. This software enables precise control 
over the drone’s flying speed, altitude, and degree of overlap between 
flight paths, thereby ensuring consistency and comprehensiveness in the 
image capture process. Such a setup is critical for guaranteeing the 
continuity and coverage necessary for accurate seedling emergence 
monitoring. However, the challenges of repeated target recognition and 
handling non-sequential frames may arise in certain scenarios, which 
warrants further investigation. 

It is worth noting that this study introduced the TSP-YOLO frame-
work (Tracking algorithms-Swin-conv blocks-ParNet attention- 
YOLOv8n), representing a substantial architectural enhancement over 
the existing models. Integrating Swin-conv blocks and ParNet attention 
modules into both the backbone and neck parts of YOLOv8n is a novel 
approach that effectively captures the complex features of cabbage 
seedlings. In addition, compared to ByteTrack (Cui et al., 2023), Deep-
Sort is known for its high accuracy in object tracking due to its sophis-
ticated association algorithm based on deep appearance descriptors. 
DeepSort’s application to the TSP-YOLO framework enhances the 
tracking stability and reliability, especially in scenarios characterized by 
considerable variability in seedling appearance, arising from morpho-
logical and environmental factors unique to cabbage cultivation. Over-
all, the proposed TSP-YOLO framework has proven to be consistent and 
reliable, offering significant labor savings and presenting a promising 
avenue for large-scale implementation in precision vegetable farming. 

4. Conclusions 

Accurate and reliable machine vision models are essential to identify 
and count cabbage seedlings. To optimize this process, the present study 
introduces a YOLOv8n target detection network, enhanced through the 
substitution of the C2f module in the backbone network with the Swin- 
conv module. This modification leads to improved feature extraction 
capabilities, and the network is further complemented by integrating the 
ParNet Attention Mechanism module into the network structure for 
enhanced performance. The experimental results show that the 
improved YOLOv8n outperformed the original YOLOv8n network. The 
mAP50–95 of the YOLOv8n has significantly increased from 75.8 % to 
90.3 %, exhibiting a notable improvement of 14.5 %. Compared with 
mainstream models, the performance of the improved YOLOv8n 
demonstrated superior performance in all aspects. In addition, a TSP- 
yolo-based real-time cabbage seedling video counting model was 
developed based on the enhanced YOLOv8n. The counting model ach-
ieved an impressive accuracy of 98.02 %, and the counting speed is 
much faster than that of human counting. Employing a testing dataset 
comprised of ten video segments, the findings suggest that the efficacy of 
our method for estimating the cabbage emergence rate is as effective as 
the traditional manual counting technique. When combined with a UAV, 
the model enables accurate, expedient, and real-time counting of cab-
bage seedlings in natural field conditions, demonstrating its potential for 
intelligent counting purposes. By dividing the counted seedling number 
by the number of seeds sown, the emergence rate can be determined; by 
dividing the counted seedling number by the area surveyed, the cabbage 
seedling density can be determined. This approach of emergence rate or 
crop density assessment possesses versatile applications and may be 
effectively applied in determining seedling densities or emergence rates 
for a wide range of crop species. Its implementation can significantly 
improve the efficiency of crop management. 
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